
Auto-ID Center Software
Framework

Confidential, for sponsors only

Agenda

• Objective of the meeting

• Overview of the Object Name Service (ONS)

• Demonstration of the ONS

• Break

• Overview of the Savant

• Demonstration of the Savant

• Questions?

Confidential, for sponsors only

Objective of the Meeting

• Present an overview of Auto-ID center’s software
framework

• Present the design choices and get feedback for the next
version

Confidential, for sponsors only

Overview of the Object Name Service (ONS)

Confidential, for sponsors only

ONS Server

• The Object Name Service (ONS) provides a framework for

locating networked services (PML servers) for objects

tagged with EPCs.

• ONS is built over the existing DNS framework

• Given an EPC the ONS Framework will either:

Return the IP address of the PML server, at the manufacturer,

holding additional information about the EPC

Return the IP address of an internal server to which the information

about the EPC can be written to

Confidential, for sponsors only

How does ONS Server Work – High Level

Root ONS
Server

Manuf1
ONS Server

Manuf2
ONS Server

Hierarchical Domain Resolution

IP address

EPC formatted as a domain
name

EPC IP address

Pre/Resolver

Store Application

01.203D2A.916E8B.8719BAE03C

Tag

Confidential, for sponsors only

Example

1. EPC (96-bit)

01.203D2A.916E8B.8719BAE03C

Version Manufacturer Product Serial

2. EPC converted to a domain name by the pre/resolver

8719BAE03C.916E8B.203D2A.01.epc.objid.net

Serial . Product . Manufacturer . Version . Root domain

3. Domain name resolution by ONS Server

203D2A.01.epc.objid.net [Object Id Root Server]

916E8B.203D2A.01.epc.objid.net [Manufacturer server]

8719BAE03C.916E8B.203D2A.01.epc.objid.net

[Product server]

Confidential, for sponsors only

ONS Server Components

• Pre-resolver: The ONS pre-resolver computes the EPC domain name
associated with an EPC.

• Resolver: A standard DNS lookup on the EPC domain name will list
the PML servers associated with that EPC. [OS, BIND lwres, GNU
adns]

• DNS server: A DNS server that holds mapping information between
EPC domain names and IP addresses of associated PML servers.
[BIND]

• Server configuration tool: An XML processor that generates BIND
configuration files, given an ONS specification file

• Specification management tool: An XML processor that updates ONS
specification files given ONS update files.

• Content Server: Stores the mapping information in a database and
serves the specification XML files to one or more ONS severs

Confidential, for sponsors only

Pre-Resolver

• Translates EPC number to EPC domain name

Simple Translation

Translation using formatting strings

Confidential, for sponsors only

Pre-Resolver – Simple Translation

Input

01.203D2A.916E8B.8719BAE03C

Output:

8719BAE03C.916E8B.203D2A.01.epc.objid.net

This assumes that the pre-resolver knows the EPC partitioning

Confidential, for sponsors only

Data Flow – Simple Translation

3. ePC domain2. ePC domain

Pre-resolver Resolver
1. ePC ONS

Server Network4. IP addresses5. IP addresses

Confidential, for sponsors only

Pre-Resolver – Translation Using Formatting
Strings

1. EPC (96-bit)

01.203D2A.916E8B.8719BAE03C

Version . Manufacturer . Product . Serial

2. The pre-resolver recognizes the version to be 01 The pre-resolver

queries the ONS server for the info record

info.01.epc.objid.net

3. The ONS server returns a TXT record with the format string

4444.4444.4.4.4444.4.4.44444.44

4. EPC converted to a domain name by the pre/resolver

E03C.19BA.7.8.6E8B.1.9.203D2A.01.epc.objid.net

Confidential, for sponsors only

Pre-Resolver – Translation Using Partial-
Formatting Strings

• If the ONS Server specifies partial formatting string then

the pre-resolver will ignore the least significant bits

For example: Lets consider

EPC (64 bits):
0110101001111001011010011100101111010001101011000110110101100100

Formatting String (40 bits): 4.4.4444.1.1.1.3.3.3.013

Since the EPC has 64 bits, the least significant 24 bits are truncated

resulting in: 0110101001111001011010011100101111010001.

Confidential, for sponsors only

Data Flow – Translation Using Formatting
Strings

Root ONS
Server

Manuf1
ONS Server

Manuf2
ONS Server

Hierarchical Domain
Resolution

Pre-resolver

Resolver

Client

6. IP address

2. Request for
info record

4. Domain name

5. Domain name

1. ePC
DNS server

with

Recursive
Service

3. Format string

Confidential, for sponsors only

Pre-Resolver – How to use it

• The pre-resolver is built on a stub-resolver. The DNS
server performing lookups for the pre-resolver should
provide recursive lookup service.

• Command Line Interface
onslookup <bit-string> <domain-suffix> <name-server>

Confidential, for sponsors only

Pre-Resolver – C Interface

int initialize_ons_resolver(ons_resolver_state *state,

const char *epc_domain_suffix,

const char *resolver_conf,

int iterative_lookup);

int get_epc_domain(ons_resolver_state state,

char *result_domain_name,

int num_epc_bits,

const char *epc);

int get_epc_domain_2(char *result_domain_name,

int num_epc_bits,

const char *epc,

const char *epc_domain_suffix,

int flags);

Confidential, for sponsors only

Pre-Resolver – Java Interface

• public static String getEpcDomain(int numBits, String epc,
String epcDomainSuffix, boolean iterative, String
nameServer);

Confidential, for sponsors only

Demo of Pre-Resolver

• Converting EPC:000000001000001000012345 to a
domain name using formatting strings

• Sample code that performs this lookup
public static String getEpcDomain(String epc,
String domainSuffix) throws ResolverException {

return Resolver.getEpcDomain(96, epc,

domainSuffix, false, null);

}

http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000001000001000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus

Confidential, for sponsors only

ONS Configuration/Maintenance

Confidential, for sponsors only

ONS Specification File

• An ONS specification consists of the following
components:

High-level configuration information: Trusted subnet, external and
internal server definitions, administration keys, hint and zone files.

Content information: Authoritative zones, secondary (slave) zones,
host and name server entries.

• The ONS specification file is an XML file with syntax
defined in ons_specification.dtd

• Sample ONS specification file, ONS content file

Confidential, for sponsors only

Server Configuration Tool

• The server configuration tool (onsconfig) reads an
ONS specification file to generate the required DNS
configuration and zone files.

• The server configuration tool is written in XT and Java

• Command line interface
onsconfig <type:internal/external> <input config
file> --bothservers --zonesonly

Confidential, for sponsors only

Configuration Management Tool

• The ONS content information can be managed using the
configuration management tool (onsupdate).

• Sample ONS configuration update file

• Command line interface
onsupdate <input file> <update file> <output file>
<error file>

Confidential, for sponsors only

Content Server

• Content Server stores the mapping information in a
database and serves the specification XML files to one or
more ONS servers.

• Content Server is implemented as a webserver serving
ONS specification files over HTTP

• Master ONS content file served by the Content Server

• Slave ONS content file served by the Content Server

http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo
http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo
http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo-slave
http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo-slave

Confidential, for sponsors only

Redundancy – Master/Slave Configuration

• To improve the reliability of ONS servers, one or more slave servers
can be configured. Slave servers refresh the authoritative
information using zone transfers. Alternately, the master servers can
notify the slaves regarding the updates made to the zone

Master server

Zone RRs
Polling

Zone transfer
Slave server

Confidential, for sponsors only

Caching

• The DNS server offering recursive service will perform caching as
follows:
1. While performing a lookup, the server will check its cache first for the closest

match, and then continue the search.

2. The cache holds all RRs that are still valid according to the associated TTL (time
to live) parameter. This is called positive caching.

3. The cache also holds the queries for which no RR was found. Negative entries
are valid for the TTL specified for the zone. This is called negative caching.

• Negative TTL determines the time taken for a new EPC range entry to
take effect.

• Positive TTL determines the time for which a PML server should be
active after it is removed from the ONS framework.

• Positive and Negative TTL

http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo
http://192.168.1.62/cgi-bin/content-server.cgi?ONSCLIENTNAME=boarddemo

Confidential, for sponsors only

Redundancy & Caching - Demo

• Caching

Positive caching: EPC:000000001000001000012345

Negative caching: EPC:000000011000001000012345

Redundancy

Disconnect the master server, and perform lookup on a EPC

EPC:000000002000002000012345

http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000001000001000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus
http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000001000001000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus
http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000011000001000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus
http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000011000001000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus
http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000002000002000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus
http://192.168.1.61:8080/boarddemo/onslookup.jsp?__r=onslookup.jsp&epc=000000002000002000012345&numbits=96&epcdomainsuffix=epc.objid.net.bogus

Confidential, for sponsors only

Security – Trusted Subnets

Internal
ONS Server

External
ONS Server

Internal
subnet

Recursive
queries &
responses

Firewall

forward
external
queries

no recursion
for incoming

queries

Internet
/VPN

Slave ONS Server Slave ONS Server

Zone transfer Zone transfer

Confidential, for sponsors only

Technology

• The ONS resolver uses the GNU adns & dnsjava libraries to perform
DNS lookups

• ONS servers are implemented by appropriately configuring BIND
(Berkeley Internet Name Domain) servers.

• The configuration tool is written using XT (an implementation of XSLT
with some extensions). An XSLT file transforms the given XML
specification files to BIND configuration files. XT extension functions
allow the invocation of Java methods during the XSL transform.

Confidential, for sponsors only

Performance Statistics

• Hardware & Software Configuration:

DELL PowerEdge Server 2500, with 1133MHz Intel Pentium III
processor, 512KB cache, and 512MB RAM, running BIND 9.1.3

• Test Scenario

Local machine or machine accessible through 100 Mbps Ethernet
LAN

• Performance

0.27 ms/ONS Lookup (~3,700 ONS Lookups/sec)

Confidential, for sponsors only

Future Work

• Look into the possibility of using SRV & TXT records for
connection provisioning

Port number of the PML server

Services exposed by the PML server

Connection mechanism

Security & Encryption schemes

Confidential, for sponsors only

Questions?

Confidential, for sponsors only

Overview of Savant

Confidential, for sponsors only

Savant

• The Savant is a data router that performs operations
such as data capturing, data monitoring, and data
transmission

Confidential, for sponsors only

Requirements

• System that can capture high volume of EPC events from
multiple readers

• Platform independent implementation

• Self-replicating system that can be installed at the store
level or at a regional data center

• Distributed data management and monitoring

• Interface to share EPC data with other applications

Confidential, for sponsors only

Sample Savant Network

Boston
Store

Providence
Store

Chicago
Store

Detroit
Store

NewEngland
Region

MidWest
Region

US
National
Center

ES ES ES ES

ISIS

IS

Confidential, for sponsors only

Edge Savants

• Edge Savants (ESs) are the leaf nodes in the savant network.
Typically, these savants reside at the stores, warehouses and
manufacturing plants

• ESs are connected to the RF readers and capture, monitor, log real-
time EPC data from the readers

• For each read the savant maintains:

Tag EPC

Reader EPC

Timestamp

Non-EPC information such as temperature, geographical
information etc

Confidential, for sponsors only

Internal Savants

• Internal Savants (ISs) are internal nodes of the savant
network. They collect EPC data from their descendents .
These descendents could be ES or IS.

• Internal Savants are typically located at the regional or
national data centers of an enterprise

• In addition to maintaining tag EPC, reader EPC and
timestamp the Internal Savant also maintains the
‘Source Node’ of the data.

Confidential, for sponsors only

Data Management and Migration

• EPC data is collected by the Edge
Savants and is migrated to the Internal
Savants.

• EPC data is distributed among various
nodes of the savant network based on
two attributes

Time: As time goes by the data
collected by a particular Savant can
be found as we travel vertically in the
network
Space: Data collected by a particular
Savant can be found only on the
Savants that are on the path from the
root of the tree to it.

s1
(0 - 3hrs)

s2
(0 - 3hrs)

s3
(0 - 3hrs)

s4
(0 - 3hrs)

r1
(3hrs - 7days)

r2
(3hrs - 7days)

N
(7days - 60days)

Confidential, for sponsors only

Localized Data Monitoring

• Savant is a self-replicating
system

• Real-time EPC data can be
monitored by the Edge Savants
capturing that data

• Aggregated EPC data can be
monitored by the Internal
Savants

s1
(0 - 3hrs)

s2
(0 - 3hrs)

s3
(0 - 3hrs)

s4
(0 - 3hrs)

r1
(3hrs - 7days)

r2
(3hrs - 7days)

N
(7days - 60days)

Confidential, for sponsors only

Components of the Savant

SOAP Interface

Reader

Reader

Reader

ReaderReal-time In-memory
Database (RIED)

Event Management
System (EMS)

Task Management
System (TMS)

Relational Database

Local ONS Server

Global ONS Server

Wal-Mart's Global
PML Server

P&G’s Global
PML Server

Gillette’s Global
PML Server

Other’s Global
PML Server

3rd Party
Applications

(SAP R/3)

Data Request PML Response

Monitoring
Agent

Network
Management

Center

Store Level Savant
(Sam’s Club, Tulsa)

Confidential, for sponsors only

Components of the Savant

• Event Management System (EMS)

Capture, filter, broadcast & log EPC data in real-time

• Real-time In-memory Event Database (RIED)

Maintains the latest tags read by various readers which
can be queried through a native/JDBC interface

• Task Management System (TMS)

Schedules and executes tasks. These tasks can be used
for data monitoring and migration

Confidential, for sponsors only

Event Management System (EMS)

• Event Management System captures, filters, broadcasts
& logs EPC data

• Event Management System is implemented on Edge
Savants (ES) since the EPC data enters the Savant
network only through the Edge Nodes

Confidential, for sponsors only

Requirements of EMS

• EMS should be a high-performance system

• Support multiple EPC readers that communicate using
different Auto-ID center protocols

• Support event filters with one input stream and multiple
output streams for:

Smoothing, Coordination, Forwarding

• Support for multiple loggers

Database, Memory model, remote server (HTTP, SOAP,
JMS)

• Ability to handle spikes in the event volume

Confidential, for sponsors only

Components of EMS

• Reader Adapter

Communicates with the readers to capture EPC events

• Event Queues

Asynchronous queuing system that captures EPC data from various
reader adapters and broadcasts the data to multiple event loggers

• Event Filters

Gets data from one or more input event streams and posts the data
to multiple output streams, after filtering the data.

• Event Loggers

Logs data to a database, memory model or a remote server (HTTP,
SOAP, JMS)

Confidential, for sponsors only

Sample EMS

Reader Adapter Reader Adapter

Event Queue

Event Logger

To Remote
Machine

Event Filter

Event Filter

Event Queue Event Queue

Event Logger

Database

Memory
Event Logger

RIED Memory Model

Confidential, for sponsors only

Reader Adapter

• Reader Adapter communicates with
the readers to capture EPC data

• Reader Adapter is an ‘event producer’
that posts event data to any ‘event
consumers’ that implement reader
Interface

• All modules which capture data from
the readers have to implement
ReaderAdapterInterface to
be part of the EMS framework

Reader 1 Reader 2 Reader 3 Reader 4

Reader Adapter1 Reader Adapter2

Event Queues/Filters/Loggers
(Implementations of Reader Interface)

EPC, Non-EPC, Status events

Confidential, for sponsors only

Event Queue

• Buffers data to handle spikes in
event volumes

• Asynchronous queuing system
that captures EPC data from
various reader adapters and
broadcasts the data to multiple
event loggers

• All event queues should
implement Reader
Interface to be part of the
EMS framework

Reader Adapter1 Reader Adapter2

Reader Interface

Event Queue

Memory Event Logger Network Event Logger

Confidential, for sponsors only

Event Filter

• Event Filters are added between event producers and
consumers to Smooth, Coordinate and Forward event
data

• Event Filters get data from one or more input streams and
forwards data to multiple output streams, after filtering

• Event Filters can filter data based on

EPC, EPC Prefix, Reader EPC, Reader Location, Time

• Event Filters should implement
EventFilterInterface to be part of the EMS
framework

Confidential, for sponsors only

Event Logger

• Logs or Broadcasts events

• Type of loggers

Database logger: Logs events into a database

RIED Logger: Logs events to real-time in-memory event
database

Network loggers: Logs events to remote servers. Can log
these events through SOAP,HTTP, TCP/IP

• Event Loggers should implement ReaderInterface
to be part of the EMS framework

Confidential, for sponsors only

3rd Party Applications Subscribing for EPC
Data

• 3rd party applications can subscribe to the public event
queues to get real-time EPC data

• 3rd party applications can register themselves through a
SOAP interface

• The subscriber can choose an event filter that the data
has to pass through before the queue broadcasts the
data

• SOAP Services Installed

http://192.168.1.61:8080/soap/admin/index.html
http://192.168.1.61:8080/soap/admin/index.html

Confidential, for sponsors only

EMS SOAP Interface

• public static String startup()
• public static void shutdown()
• public static Vector listPublicListeners()
• public static String addPublicListener
(String listenerName, String queueName,
String loggerClass, String loggerArgs)

• public static String addPublicListener
(String listenerName, String queueName,
String loggerClass, String loggerArgs,
String filterClass, String filterArgs)

• public static void removePublicListener
(String listenerName)

Confidential, for sponsors only

EPCs in use for the Demo

00.0000001.000001.000000001 (Gillette – Mach3)

00.0000001.000001.000000002 (Gillette – Mach3)

00.0000001.000001.000000003 (Gillette – Mach3)

00.0000002.000002.000000001 (P&G – Covergirl)

00.0000002.000002.000000002 (P&G - Covergirl)

00.0000002.000002.000000003 (P&G – Covergirl)

Confidential, for sponsors only

Demo

• 3rd Party application subscribing to a public event queue

• Get PML Readings over SOAP using Remote Event
Dispatcher

All reads

Only Gillette reads

• Get EPC event broadcasted in real-time

All reads, file

Only Gillette reads, file

http://192.168.1.61:8080/boarddemo/add-batch-listener.jsp?__r=add-batch-listener.jsp
http://192.168.1.61:8080/boarddemo/add-batch-listener.jsp?__r=add-batch-listener.jsp
http://192.168.1.61:8080/boarddemo/add-batch-listener.jsp?__r=add-batch-listener.jsp&filterArgs=epc=000000001.*

Confidential, for sponsors only

EMS Implementation – Technology

• EMS is a pure-Java implementation (JRE 1.2+)

• ANTLR (ANother Tool for Language Recognition) parser
generator for the EMS configuration parser

• Apache Tomcat SOAP server for the external EMS
interface to add, monitor and remove remote listeners

Confidential, for sponsors only

EMS Implementation – Reader Adapters

• Implement the interface
“org.autoidcenter.epms.reader.comm.ReaderA
dapterInterface” This interface defines a shutdown
method with no arguments or return value.

• Implement a constructor taking a String, and a
ReaderInterface argument. EMS passes the initialization
string specified in the startup clause of the adapter command
as the first argument. It passes the EMS unit specified in the for
clause of the adapter command in the second argument.

• Configuration

adapter intermec_adapter_1 is
org.autoidcenter.ems.adapter.ImecAdapter startup
"port=10101" for main_queue;

Confidential, for sponsors only

EMS Implementation – Event Loggers

• Implement the interface
“org.autoidcenter.epms.reader.comm.ReaderI
nterface”

• Implement a constructor taking a String argument. EMS passes
the initialization string specified in the startup clause of the
logger command to this argument.

• Configuration
logger db_logger is
org.autoidcenter.ems.logger.DBEventLogger startup
"name=db_logger
db_url=jdbc:postgresql://localhost/epc_data
db_user=postgres db_password=postgres";

Confidential, for sponsors only

EMS Implementation – Event Filters

• Implement the interface
“org.autoidcenter.epms.reader.comm.EventFilterIn
terface”. On startup, the EMS invokes the setListeners method
to assign the output processing units for this filter.

• Implement a constructor taking a String argument. EMS passes the
initialization string specified in the startup clause of the filter command
as this argument

• Configuration
filter memdb_filter is
org.autoidcenter.ems.filter.MemoryLoggerFilter
startup "reference_epc=000000000000000000000000
max_read_interval=1000" output (add_queue
remove_queue);

Confidential, for sponsors only

Performance Statistics

• Hardware & Software Configuration:

DELL PowerEdge Server 2500, with 1133MHz Intel Pentium III
processor, 512KB cache, and 512MB RAM, running Blackdown
release Java 1.3.1

• Test Scenario

The test involved sending 1 million events through an Event Queue
of size 100K events. The Event Logger simply maintained the
number events received

• Performance

10.3 µs/EPC Event (~95,000 EPC Events/sec)

Confidential, for sponsors only

Demo Configuration

Reader Adapter

Main Event Queue

Add Event Queue

Event Logger

Database

Memory
Event Logger

RIED Memory Model

EMS Configuration file

Add Event Queue

EMS Configuration Grammar

Confidential, for sponsors only

Demo

• Attach the client to the Add Queue, file

• Attach the client to the Remove Queue, file

Confidential, for sponsors only

Real-time In-memory Event Database (RIED)

• Real-Time In-Memory Event Database is used to
maintains latest event information by the Edge Savants

Confidential, for sponsors only

RIED - Requirements

• High-performance in-memory database

• Database should be able to maintain multiple snapshots

• Provide a standard API (JDBC) to access and manipulate
data

Confidential, for sponsors only

RIED – Design Choices

• Reduced Data Manipulation Language (DML) complexity

• Reduced Data Definition Language (DDL) complexity

• Simple query optimization

• No constraint maintenance and triggers

Confidential, for sponsors only

RIED – Architecture

JDBC Interface

JDBC Query/ Update JDBC ResultSet

DML Parser

Query optimizer

Native Query Processor

Data Structures

DDL Parser

DDL

Sort Area

Native SQL statement

Parsed SQL

Execution Plan

Search paths

Automated code generation

Result relation

Confidential, for sponsors only

RIED Implementation - Technology

• RIED is a pure-Java implementation (JRE 1.2+)

• ANTLR (ANother Tool for Language Recognition) parser
generator for the DDL and DML parsers.

Confidential, for sponsors only

RIED Implementation – Data Definition
Language (DDL)

• In-Memory database schema is defined in DDL
• DDL parser loads the table definitions and creates appropriate data

structures
• Table are defined using create table command

CREATE TABLE <table name> (
<column name 1> <datatype 1> [PRIMARY KEY | INDEX]
<column name 2> <datatype 2> [PRIMARY KEY | INDEX]
...

);

• Data types are supported by RIED:
VARCHAR(n): A string datatype with maximum length n.
NUMERIC(m, [n]): A numeric datatype with scale m, and precision n.
BIGINT: A Java Long datatype
INTEGER: A Java Integer datatype
DOUBLE: A Java Double datatype
FLOAT: A Java Float datatype

• DDL Grammar

Confidential, for sponsors only

RIED Implementation – Data Manipulation
Language (DML)

• RIED DML supports a subset of SQL92

• DML statements can be executed on the RIED system
over a native Java interface, or using a JDBC driver
implemented using Java RMI (Remote Method
Invocation).

• SQL functions supported by RIED
MIN, MAX, COUNT, SUM, ABS, LENGTH, TRUNC, ROUND, MOD,
STRPOS, LOWER, UPPER

• New functions can be added to the RIED DML language
easily by extending the FunctionManager class in
the package org.autoidcenter.memdb

Confidential, for sponsors only

RIED Implementation – Data Manipulation
Language (DML) – SQL Functionality

• SELECT
SELECT [DISTINCT | ALL] expr1, expr2, ...
FROM table1 [AS alias1], table2 [AS alias2], ...
[WHERE select_expr1]
[GROUP BY group_expr1, group_expr2, ...]
[HAVING having_expr]

[[UNION | EXCEPT | INTERSECT] [ALL]
another select query] ...

• INSERT
INSERT INTO table [(col1, col2, ...)] subquery

• UPDATE
UPDATE table
SET col1 = expr1, col2 = expr2, ...
[WHERE select_expr]

• DELETE
DELETE FROM table [WHERE select_expr]

Confidential, for sponsors only

RIED Implementation – Data Manipulation
Language (DML) – SQL Functionality

• Specify table prefix to reference a column
“SELECT foo.bar FROM foo” instead of “SELECT bar FROM
foo”

• Use COUNT instead of UNIQUE & EXISTS
keywords

• Complete DML grammar

Confidential, for sponsors only

RIED Implementation – Query Optimization
Algorithm

• RIED has a built-in query optimization algorithm

For Example:
SELECT tab1.col1, tab2.col1,

FROM tab1, tab2

WHERE tab1.col2=tab2.col2 AND tab1.col3=tab2.col3 AND tab1.col3=‘1’

Tab1 Tab2
Index scan on

col3 for 1
Index on col2, col3 Index on col2

JOIN

Col1, col2, col3 Tab1.col2 Col1, col3

SELECT

Tab1.col1, tab1.col3, tab2.col1, tab2.col3

Confidential, for sponsors only

RIED Implementation – Version Maintenance

• RIED uses Sequence Manager for version maintenance

• RIED supports COMMIT and ROLLBACK functionality

• Currently RIED supports one transaction at a time on the
latest version, this is mainly because of the high-cost of
lock and unlock operations on records

• RIED supports multiple parallel connections on previous
snapshots

Confidential, for sponsors only

HOW to Access RIED

• RIED can be accessed through

Native Interface

JDBC Interface

Confidential, for sponsors only

Demo

• Attach the client to the Add Queue, file

• Attach the client to the Remove Queue, file

Confidential, for sponsors only

Performance Statistics – Persistent Database

• Hardware & Software Configuration:

DELL PowerEdge Server 2500, with 1133MHz Intel Pentium III
processor, 512KB cache, and 512MB RAM, running Blackdown
release Java 1.3.1, PostgreSQL (7.0.2)

• Test Scenario

Test involved sending 100K events to a database logger. The
database already contained 200K events when the test started.
Every event was logged in the observation table. The latest
observation for each EPC is maintained in a parent table called
object. (Schema)

• Performance:

10 ms/event logged (100 events/second)

Confidential, for sponsors only

Performance Statistics – RIED

• Hardware & Software Configuration:

DELL PowerEdge Server 2500, with 1133MHz Intel Pentium III
processor, 512KB cache, and 512MB RAM, running Blackdown
release Java 1.3.1, PostgreSQL (7.0.2)

• Test Scenario

Every event was logged in the latest_epc_observation table. This
logger performs “smoothing” by associating each object EPC to
exactly one reader EPC at any time. Any read from a different reader
is logged only if the latest timestamp entry for that EPC is older than
2 seconds. (Schema)

• Performance:

66.5 µs/event logged (15,000 events/second)

Confidential, for sponsors only

Task Management System (TMS)

• The Savant performs data management, and data monitoring using
customizable tasks

• Task Management System (TMS) manages tasks as operating
system manages processes

Confidential, for sponsors only

TMS – Requirements

• The Savant TMS should be a platform-independent system requiring
little memory processing power

• The Savant TMS should automatically upgrade the tasks it executes

• The Savant TMS should present a well-defined, interoperable
external interface to schedule, monitor, and remove tasks

• Tasks should be written in a platform-independent language using a
simple, well-defined SDK

Confidential, for sponsors only

TMS - Design

SOAP Interface

Database

Task Manager

Class Loader

Class Server

Client

Client

Client

Admin Client

Confidential, for sponsors only

Task Manager

• Task Manager is responsible for running and maintaining
tasks running on a savant on behalf of user

• Every task submitted to the system consists of a
schedule, which determines how often the task must
run, whether it should be continuously running, etc.

• Depending on the schedule, the Task Manager attempts
to resolve which task to run at each time interval

Confidential, for sponsors only

Types of Tasks

• One-time task

The Task Manager spawns the query task and returns the
result.

• Recurring task

The Task Manager maintains the recurring schedule in a
“persistent store” and then executes the task given the
schedule.

• Permanent task

This task is executed continuously by the Task Manager. The
Task Manager periodically monitors the task and in case of
any failure the Task Manager re-spawns the task.

Confidential, for sponsors only

SOAP Interface

• startup: Startup the TMSTaskServer.

• shutdown: Shutdown the TMSTaskServer.

• getPermanentTask: Retrieve a permanent task.

• getRecurringTask: Retrieve a recurring task.

• getAllPermanentTasks: Retrieve all permanent tasks.

• getAllRecurringTasks: Retrieve all recurring tasks.

• addRecurringTask: Add a recurring task.

• addPermanentTask: Add a permanent task.

• addOneTimeTask: Add a one-time task to the system.

• removePermanentTask: Remove a permanent task.

• removeRecurringTask: Remove a recurring task.

Confidential, for sponsors only

Class Server

• Class Server maintains the latest version of the tasks
that are used by the Task Manager

• Task Manager maintains a reference to the Class Server
and loads the new classes on demand when they become
available without any restarts

Confidential, for sponsors only

TMS Implementation – Technology

• TMS is a pure java implementation (JRE 1.2+)

• Apache Tomcat SOAP server for the external TMS interface to view,
schedule and remove tasks.

• PostgreSQL Database for the TMS persistent store.

• Apache Tomcat Webserver for the administration utilities.

• Apache HTTP server for the class server implementation.

Confidential, for sponsors only

TMS Implementation – Writing Task

• Implement the interface
org.autoidcenter.tms.TaskInterface for recurring
or permanent tasks

• Implement the interface
org.autoidcenter.tms.OneTimeTaskInterface
for one-time tasks

• Implement a constructor taking one arguments, the String input
data for the thread

• Place the class in the class servers accessed by the Savant TMS or in
the CLASSPATH

• Pass the appropriate String input data when executing the task
using the TMS SOAP interface.

Confidential, for sponsors only

Task Manager Algorithm

• The Task Manager behaves exactly as the cron scheduler when
handling recurring tasks..

• As for permanent tasks, the Task Manager checks if all permanent
tasks are running in the system every minute. If a task is down, it is
automatically re-spawned.

• The Task Manager ensures that at most one instance of every task is
running in the system at any given time. That is, it does not re-spawn
a task until the previously scheduled instance is done executing.

Confidential, for sponsors only

Simple Tasks

• ONS/PML Lookup Task

This recurring task uses the ONS and PML servers to locate information
about objects encountered by the Savant. The product information is then
cached in the database. Task

• Shelf Stock out Task

This task continuously monitors the shelf inventory of a certain product
and sends alerts when the inventory drops below certain threshold. Task

• Data Migration Tasks

These recurring tasks export EPC data up the logical Savant tree.

Leaf node, Parent node

• SQL Query Task

This is a one-time task that performs an SQL query and returns the results
in PML

http://192.168.1.61:8080/boarddemo/latest-reads.jsp
http://192.168.1.61:8080/boarddemo/latest-reads.jsp
http://192.168.1.61:8080/boarddemo/shelf-event-viewer.jsp
http://192.168.1.61:8080/boarddemo/latest-reads.jsp
http://192.168.1.62:8080/boarddemo/latest-reads.jsp

Confidential, for sponsors only

Future Work

• Remote monitoring & maintenance of the Savant and all
its components

• Remote software upgrades of the Savant and key tools
(JRE, Apache)

• Provide RIED snapshot management system

• Security infrastructure

Confidential, for sponsors only

Questions?

Confidential, for sponsors only

Contacts

• Prof. Sanjay Sarma (sesarma@mit.edu)

• Dr. Dan Engels (dragon@lcs.mit.edu)

• Prasad Putta (lprasad@alum.mit.edu,. 617-335-0693)

mailto:sesarma@mit.edu
mailto:dragon@lcs.mit.edu
mailto:dragon@lcs.mit.edu
mailto:lprasad@alum.mit.edu
mailto:lprasad@alum.mit.edu

	
	Agenda
	Objective of the Meeting
	Overview of the Object Name Service (ONS)
	ONS Server
	How does ONS Server Work – High Level
	Example
	ONS Server Components
	Pre-Resolver
	Pre-Resolver – Simple Translation
	Data Flow – Simple Translation
	Pre-Resolver – Translation Using Formatting Strings
	Pre-Resolver – Translation Using Partial-Formatting Strings
	Data Flow – Translation Using Formatting Strings
	Pre-Resolver – How to use it
	Pre-Resolver – C Interface
	Pre-Resolver – Java Interface
	Demo of Pre-Resolver
	ONS Configuration/Maintenance
	ONS Specification File
	Server Configuration Tool
	Configuration Management Tool
	Content Server
	Redundancy – Master/Slave Configuration
	Caching
	Redundancy & Caching - Demo
	Security – Trusted Subnets
	Technology
	Performance Statistics
	Future Work
	Questions?
	Overview of Savant
	Savant
	Requirements
	Sample Savant Network
	Edge Savants
	Internal Savants
	Data Management and Migration
	Localized Data Monitoring
	Components of the Savant
	Components of the Savant
	Event Management System (EMS)
	Requirements of EMS
	Components of EMS
	Sample EMS
	Reader Adapter
	Event Queue
	Event Filter
	Event Logger
	3rd Party Applications Subscribing for EPC Data
	EMS SOAP Interface
	EPCs in use for the Demo
	Demo
	EMS Implementation – Technology
	EMS Implementation – Reader Adapters
	EMS Implementation – Event Loggers
	EMS Implementation – Event Filters
	Performance Statistics
	Demo Configuration
	Demo
	Real-time In-memory Event Database (RIED)
	RIED - Requirements
	RIED – Design Choices
	RIED – Architecture
	RIED Implementation - Technology
	RIED Implementation – Data Definition Language (DDL)
	RIED Implementation – Data Manipulation Language (DML)
	RIED Implementation – Data Manipulation Language (DML) – SQL Functionality
	RIED Implementation – Data Manipulation Language (DML) – SQL Functionality
	RIED Implementation – Query Optimization Algorithm
	RIED Implementation – Version Maintenance
	HOW to Access RIED
	Demo
	Performance Statistics – Persistent Database
	Performance Statistics – RIED
	Task Management System (TMS)
	TMS – Requirements
	TMS - Design
	Task Manager
	Types of Tasks
	SOAP Interface
	Class Server
	TMS Implementation – Technology
	TMS Implementation – Writing Task
	Task Manager Algorithm
	Simple Tasks
	Future Work
	Questions?
	Contacts

